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Introduction 

The note of rough sets was introduced by Z. Pawlak [25] in 1982. Rough set 

theory is an extension of set theory. The main idea of rough sets corresponds 

to the concepts of lower and upper approximations of a set. Z. Pawlak [26] 

introduced the lower and upper approximations of a set with reference to an 

equivalence relation. Many mathematics were interested in studying the 

relationship between rough sets and algebra. For example, Z. Bonikowaski and 

Z. Pomykala [27, 11], studied Algebraic structures of rough sets, R. Biswas 

and S. Nanda [19], introduced the notion Rough Group and Rough subgroups, 

R. Chinram [18], studied the rough prime ideals and rough fuzzy prime ideals 

in Γ - semigroups, N. Kuorki [13],  introduced the notion of rough ideals of a 

semigroup,. Also construction of rough sets was studied in [3, 14], B. Davvaz 

[1], introduced the notion of Roughness in rings, B. Davvaz and Osman 
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Kazansi [2], introduced and studied the rough prime (primary) ideals and rough 

fuzzy prime (primary) ideals in commutative rings. And also, some properties of 

rough prime ideals were studied in [22, 17, 16], V. Selvan and G.Senthil 

Kumar [24], introduced the notion of rough ideals in semirings, Faraj. A. 

Abdunabi [7], introduced the notion of rough maximal ideals on ring 

approximation space. In addition, the concept of a ring with involution was 

studied in – depth by several mathematicians. As, I. N. Herstein [10] 

introduced the notion of rings with involution, R. Wiegandt [21], studied the 

structure of involution rings with chain condition, U. A. Aburawash and K. B. 

Sola [23], introduced the notion of ∗-Zero divisors and ∗-Prime ideals in ring 

with involution, E. Al Amin and K. B. Sola [5], introduced the notion of rough 

∗- ideals on ∗-ring approximation space. 
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        In this paper, we present the concept of roughness of ∗- maximal 

ideals. Also, we discuss rough ∗ -prime (∗-completely prime) ideals and 

present several properties of these ∗-ideals of a ∗ - ring approximation space. 

2. Approximations in ring 

In this section, some well-known basic identities are given in Pawlak 

approximation space and ring approximation space.  

      Definition 2.1 [25]: A pair (U, ~) where U ≠ ∅ and ~ is an 

equivalence on U is called the Pawlak approximation space.  

      Definition 2.2 [26]: For an approximation space (U, ~) by a rough 

approximation in (U, ~) we mean a mapping 𝐴𝐴𝐴𝐴𝐴𝐴: 𝑃𝑃(𝑈𝑈) → 𝑃𝑃(𝑈𝑈) × 𝑃𝑃(𝑈𝑈): 

defined by: 

𝐴𝐴𝐴𝐴𝐴𝐴 (X) =  (𝐴𝐴𝐴𝐴𝐴𝐴 (X), 𝐴𝐴𝐴𝐴𝐴𝐴 (X)) for every X ∈ P(U);   X ⊆ U, where   
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𝐴𝐴𝐴𝐴𝐴𝐴 (𝑋𝑋) = {𝑥𝑥 ∈ 𝑋𝑋:  [𝑥𝑥]~ ⊆ 𝑋𝑋} 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑋𝑋) =  {𝑥𝑥 ∈ 𝑋𝑋:  [𝑥𝑥]~ ∩ 𝑋𝑋 ≠ ∅}. 

  𝐴𝐴𝐴𝐴𝐴𝐴 (X) is called a lower rough approximation of X in (U, ~) where as 𝐴𝐴𝐴𝐴𝐴𝐴 

(X) is called upper rough approximation of X in (U, ~). 

      Definition 2.3 [26]: Given an approximation space (U, ~), a pair (A, B) 

∈ P(U) × P (U) is called a rough set in (U, ~ ) iff ( A, B) = Apr (X), for some X 

∈ P  (U) . 

 

     In the category of rings, algebraic rings allow the study of algebraic 

structures that involve two primary operations: addition and multiplication on 

nonempty set. As defined in the following definitions.  

      Definition 2.4: A ring will always mean an associative ring, that is a 

nonempty set R together with two binary operations of + (addition) and  . 

(multiplication) such that: 
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1. (R, +) is an addition abelian group. 

 2. (R, ⋅) is a multiplication semigroup. 

 3. A addition and multiplication are connected by the distributive laws; that 

is:  

a (b + c) = ab + ac, and (a + b) c = ac + ab for all a, b, c ∈ R. 

          Definition 2.5: A subset 𝐼𝐼 of a ring R is called a left (resp. right) ideal 

of R if it satisfies the condition: a𝐼𝐼 ⊆ 𝐼𝐼 (𝐼𝐼a ⊆ 𝐼𝐼) for a ∈ R. Clearly a left (resp. 

right) ideal of R. is a subring of R. A two - sides ideals 𝐼𝐼 of a ring R (briefly 

called an ideal of R) is both a left and a right ideal of R, denoted by 𝐼𝐼 ⊲ 𝑅𝑅.  

      Definition 2.6:  An ideal M of an involution ring R is called  maximal 

ideal  if M  ≠  𝑅𝑅 and the only ideal strictly containing M is 𝑅𝑅. 



 Alostath Issue 27 Fall 2024   

 

809 

 

      Definition 2.7: An ideal 𝑃𝑃 of a ring R is called prime if for any two 

ideals 𝐼𝐼, 𝐽𝐽 of R the relation 𝐼𝐼𝐼𝐼 ⊆ 𝑃𝑃  implies  either 𝐼𝐼 ⊆ 𝑃𝑃  𝑜𝑜𝑜𝑜  𝐽𝐽 ⊆ 𝑃𝑃.  

          Definition 2.8: An ideal 𝑃𝑃 of a ring R is called completely- prime ideal 

of a ring R  if for a, b ∈ 𝑅𝑅, 𝑏𝑏 ∈ 𝑃𝑃 implies  either 𝑎𝑎 ∈  𝑃𝑃 𝑜𝑜𝑜𝑜 𝑏𝑏 ∈ 𝑃𝑃. 

      Definition 2.9 [19]: an ideal defines an equivalence relation ≡𝐼𝐼  of a 

ring R, given by: 𝑎𝑎 ≡𝐼𝐼 𝑏𝑏 (mod 𝐼𝐼) iff 𝑎𝑎 − 𝑏𝑏 ∈  𝐼𝐼  ∀ 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅. we shall the pair 

(R, ≡𝐼𝐼) is called  a ring approximation space where R is a ring and ≡𝐼𝐼  is the 

relation induced by an ideal 𝐼𝐼 of R and denote the set of all equivalence 

classes of elements of R under this relation by R / 𝐼𝐼 and will denote the 

equivalence class of an element r of R by r/ 𝐼𝐼. 

          Proposition 2.10 [7]: let (R, mod 𝐼𝐼) be a ring approximation space 

and 𝐼𝐼, 𝐽𝐽 be two ideals of R Then:    
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1)  𝐼𝐼(𝐽𝐽) and 𝐼𝐼( 𝐽𝐽) are rough ideals of R. 

2) Let 𝐼𝐼 is  ideal and J is  subring of ring R , Then 𝐼𝐼(𝐽𝐽)  and 𝐼𝐼( 𝐽𝐽)  are rings.  

          Proposition 2.11[6]: If M is a maximal  ideal of a ring R, For any 

A ⊆ R and 𝑀𝑀 ( 𝐴𝐴) ∩  𝑀𝑀( 𝐴𝐴) )  ≠ ∅ ,then ( 𝑀𝑀( 𝐴𝐴) , 𝑀𝑀( 𝐴𝐴) )  is a rough 

maximal  ideal of a ring R. 

 

      In the category of rings with involution, the involution is an anti-

isomorphism of order 2 on R. It is evident that each commutative ring has at 

least one involution, namely the identical mapping [20]. So all 

homeomorphisms (embeddings) considered have to preserve involution and 

only subring which are closed under involution are admitted.  

3.∗- ring approximation space.  
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        In this section, we given some well-known basic identities in ∗ - ring 

approximation space. Also, we introduce the concept the ∗ - maximal ideals 

on a ∗ - ring approximation space and study some of its properties.  

         Definition 3.1: An involution ring R (∗-ring) is an associative ring with 

additional unary ∗, called involution, subject to the familiar identities:  

𝑎𝑎∗∗ =  𝑎𝑎,   (𝑎𝑎𝑎𝑎)∗  =  𝑏𝑏∗𝑎𝑎∗,   (𝑎𝑎 + 𝑏𝑏)∗  = 𝑎𝑎∗  +  𝑏𝑏∗ for all 𝑎𝑎,   𝑏𝑏 ∈  𝑅𝑅. 

    Definition 3.2: An ideal 𝐼𝐼 of an involution ring R is called ∗ - ideal, and 

denoted by  𝐼𝐼 ⊲∗  𝑅𝑅 , if it is closed under involution; that is: 𝐼𝐼∗= {𝑎𝑎∗;  𝑎𝑎 ∈

 𝐼𝐼 }  ⊆  𝐼𝐼.    

        Definition 3.4 [8]:  An ideal 𝑀𝑀∗ of an involution ring R is called ∗ - 

maximal ideal  if 𝑀𝑀∗ ≠  𝑅𝑅∗ and the only ideal strictly containing 𝑀𝑀∗ is 𝑅𝑅∗. 
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       Definition 3.5 [9]: An ideal 𝑃𝑃∗ of an involution ring R is called ∗ - 

prime  ideal if relation 𝐼𝐼𝐼𝐼⊆  𝑃𝑃∗  implies 𝐼𝐼⊆ 𝑃𝑃∗  or  𝐽𝐽⊆ 𝑃𝑃∗ where 𝐼𝐼, 𝐽𝐽 are ∗ - 

ideals of 𝑅𝑅∗. 

       Definition 3.6 [23]: An ideal 𝑃𝑃∗   of an involution ring R is called ∗ -

completely prime  ideal if for all a, b ∈ 𝑅𝑅∗, ab ∈ 𝑃𝑃∗ and   𝑎𝑎∗ b ∈ 𝑃𝑃∗   implies 

either a ∈ 𝑃𝑃∗ or  b ∈ 𝑃𝑃∗.  

    Proposition 3.7 [5]: let (𝑅𝑅∗, mod 𝐼𝐼∗) be a ∗ -ring approximation 

space and 𝐼𝐼∗,  𝐽𝐽∗ be two ∗ - ideals of involution ring 𝑅𝑅∗, Then  

(i) 𝐼𝐼∗( 𝐽𝐽∗) and 𝐼𝐼∗(𝐽𝐽∗) are rough ∗ - ideals of 𝑅𝑅∗ .  

(ii) Let 𝐼𝐼∗ is ∗ - ideal and 𝐽𝐽∗ is ∗- subring of involution ring 𝑅𝑅∗ , Then 𝐼𝐼∗( 𝐽𝐽∗) 

and 𝐼𝐼∗ (𝐽𝐽∗) are an involution rings.  

The following example shows Proposition 3.7. 
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    Example 3.7: We consider the ring 𝑅𝑅∗ = 𝑍𝑍8 and the ideal I = {0, 2, 4, 

6}. we define the involution on 𝑅𝑅∗ by  𝑎𝑎∗ = 𝑎𝑎 ∀ 𝑎𝑎 ∈ 𝑍𝑍8. There for a ∗- ideal is 

{0, 2, 4, 6} and let X = {0, 1, 2, 4, 6}, Y = {1, 2, 3, 4, 5, 6, 7} Since the 

involution on 𝑍𝑍8 define by   𝑎𝑎∗ = 𝑎𝑎 ∀ 𝑎𝑎 ∈  𝑅𝑅∗, Then 𝐼𝐼∗= 𝐼𝐼 ;  𝐼𝐼∗ is a ∗ - ideal. 

For 𝑥𝑥∗ ∈ 𝑅𝑅∗: 𝑥𝑥∗ + 𝐼𝐼∗, it can get {0, 2, 4, 6}, {1, 3, 5, 7}. There for 𝐼𝐼∗ (𝑋𝑋) =

 {𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶ (𝑥𝑥∗ + 𝐼𝐼∗) ⊆ 𝑋𝑋} =  𝑍𝑍8 is a trivial ∗ - ideal Subsequently ideal in 𝑍𝑍8 

and 𝐼𝐼∗(𝑋𝑋) = ∪ {𝑥𝑥∗  ∈ 𝑅𝑅∗ ∶   (𝑥𝑥∗ + 𝐼𝐼∗) ∩ 𝑋𝑋 ≠ ∅} = {0, 2, 4} is ∗ − ideal in 𝑍𝑍8  

Subsequently ideal in 𝑍𝑍8  ; 𝐼𝐼∗ (𝑋𝑋) ⊆ (𝑋𝑋); 𝐼𝐼∗ ⊆  . So  𝐼𝐼∗ (𝑋𝑋)  and   𝐼𝐼∗( 𝑋𝑋)  are a 

rough ∗- ideals. Thus rough ideal in 𝑍𝑍8 . Not that 𝐼𝐼∗( 𝑋𝑋)is subring in 𝑍𝑍8 and is 

not ideal Now when because 7(2) = 6 mod (8) and 6 ∉ 𝐼𝐼∗( 𝑋𝑋). There for 

 𝐼𝐼∗ (𝑋𝑋)  and   𝐼𝐼∗( 𝑋𝑋) are an involution subrings of 𝑅𝑅∗ and X is a rough an 

involution ring. Subsequently is a subring of 𝑅𝑅∗ and 𝑋𝑋 is a rough a ring. Now if 

Y = {1, 2, 3, 4, 5, 6, 7} then we have:  𝐼𝐼∗ (𝑌𝑌) = {1, 3, 5, 7} and  𝐼𝐼∗( 𝑌𝑌) =  𝑍𝑍8  is 
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a trivial ∗ − ideal . Not that 𝐼𝐼∗ (𝑌𝑌)  is ∗ − ideal in 𝑍𝑍8  Because 𝐼𝐼∗ (𝑌𝑌) closed 

under involution; 𝐼𝐼∗ (𝑌𝑌) =  𝐼𝐼(𝑌𝑌). but not ideal because ∀ 𝑟𝑟 ∈  𝑍𝑍8  ∧  ∀ 𝑎𝑎 ∈

 𝐼𝐼(𝑌𝑌)  ∃ 0 ∈  𝑍𝑍8  ∧  3 ∈  𝐼𝐼∗ (𝑌𝑌).  So 0 (3) = 0 ∉  𝐼𝐼∗ (𝑌𝑌) ;   𝐼𝐼∗ (𝑌𝑌) =  𝐼𝐼(𝑌𝑌). As 

well 𝐼𝐼∗ (𝑌𝑌) is not subring because 3 – 1= 2 ∉ 𝐼𝐼∗ (𝑌𝑌)  . But 𝐼𝐼∗ (𝑌𝑌) is not an 

involution sub ring in 𝑍𝑍8. There for  𝐼𝐼∗ (𝑋𝑋)  and   𝐼𝐼∗( 𝑋𝑋)  are not an involution 

subrings of 𝑍𝑍8. Subsequently are not a subring of 𝑍𝑍8 and Y is not a rough an 

involution ring. Therefor  𝐼𝐼∗ (𝑋𝑋)  and   𝐼𝐼∗( 𝑋𝑋)  is not a rough involution rings. 

Hence 𝑌𝑌 is not a rough a ring. 

         Definition 3.8: let (𝑅𝑅∗, 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀∗) be a ∗- ring approximation space, 

𝑀𝑀∗ is an ∗ - Maximal ideal of involution ring R, the upper and lower 

approximations of a subset X of 𝑅𝑅∗ with respect of 𝑀𝑀∗ defined by: 

𝑀𝑀∗(𝑋𝑋) = {𝑥𝑥∗  ∈ 𝑅𝑅∗ ∶  (𝑥𝑥 + 𝑀𝑀∗) ∩ 𝑋𝑋 ≠ ∅}, 𝑀𝑀∗( 𝑋𝑋) = {𝑥𝑥∗  ∈ 𝑅𝑅∗: (𝑥𝑥 + 𝑀𝑀∗) ⊆

𝑋𝑋 }  
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Respectively. where 𝑋𝑋 ⊆ 𝑅𝑅∗. 

       For the ∗ - ring approximation space (𝑅𝑅∗, 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀∗). The rough 

(undefinable) set can be expressed by its approximations with respect to 𝑀𝑀∗ 

and written in the following form: 

 𝐴𝐴𝐴𝐴𝐴𝐴 (X) = (𝑀𝑀∗( 𝑋𝑋) ,  𝑀𝑀∗(X));  𝑋𝑋 ⊆ 𝑅𝑅∗.  

The following example shows definition 3.8. 

       Examples 3.8: Let us the ring R = 𝑍𝑍6 and define the involution 

 on 𝑅𝑅 by 𝑎𝑎∗ =  𝑎𝑎   ∀ 𝑎𝑎 ∈ 𝑅𝑅 . Suppose the ∗ -maximal ideal is {0, 2, 4} and X = 

{1, 2, 3, 4, 5}. Then 𝑀𝑀∗ = 𝑀𝑀 ;  𝑀𝑀∗ is a ∗ - ideal. For 𝑥𝑥∗ ∈ 𝑅𝑅: 𝑥𝑥∗ + 𝑀𝑀∗ = 𝑥𝑥 +

𝑀𝑀 , we get {0∗, 2∗, 4∗} = {0, 2, 4}, {1∗, 3∗, 5∗} = {1, 3, 5}. So the upper 

approximation of X with respect of 𝑀𝑀∗as: 𝑀𝑀∗(𝑋𝑋) =∪ {𝑥𝑥∗  ∈ 𝑅𝑅∗ ∶   (𝑥𝑥∗ + 𝑀𝑀∗) ∩

𝑋𝑋 ≠ ∅} = 𝑀𝑀(𝑋𝑋) = {𝑥𝑥 ∈ 𝑅𝑅 ∶   (𝑥𝑥 + 𝑀𝑀) ∩ 𝑋𝑋 ≠ ∅}  = {0,2,4}  ∪ {1,3, 5} =

{0, 1, 2, 3, 4, 5}. And lower approximation of X with respect of 𝑀𝑀∗ as: 𝑀𝑀∗( 𝑋𝑋) =
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{𝑥𝑥∗  ∈ 𝑅𝑅∗ ∶ (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝑋𝑋} =  𝑀𝑀( 𝑋𝑋) = {𝑥𝑥 ∈ 𝑅𝑅 ∶ (𝑥𝑥 + 𝑀𝑀) ⊆ 𝑋𝑋}. So,  

𝑀𝑀∗( 𝑋𝑋) = {1,3, 5}, Based on that, are 𝑀𝑀∗(𝑋𝑋)   and   𝑀𝑀∗(𝑋𝑋) a rough ∗ -

maximal ideals of a involution ring R. Moreover, the boundary of X  with 

respect of 𝑀𝑀∗ is 𝐵𝐵𝐵𝐵 =  𝑀𝑀∗(𝑋𝑋)  −  𝑀𝑀∗(𝑋𝑋) = {0, 2, 4} ≠  ∅. Thus, X  is rough 

set with respect of 𝑀𝑀∗.   

          Throughout this paper we use the ∗ - ring approximation space 

(𝑅𝑅∗, ≡𝑀𝑀∗) where 𝑅𝑅∗ is a ∗-ring and ≡𝑀𝑀∗ is the relation induced by a ∗- 

maximal ideal 𝑀𝑀∗ of 𝑅𝑅∗. 

We can get the properties of ∗ -maximal ideal of involution ring R in the 

following Propositions: 

       Proposition 3.9: For a ∗ - ring approximation space (𝑅𝑅∗, 𝑚𝑚 𝑀𝑀∗ ), 𝑀𝑀∗ 

is a ∗ - maximal  ideal of an involution ring R and every subset A, B  ⊆  𝑅𝑅∗ 

we have: 
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1) 𝑀𝑀∗( 𝐴𝐴)  ⊆ 𝐴𝐴 ⊆ 𝑀𝑀∗( 𝐴𝐴) . 

2) 𝑀𝑀∗( ∅) = ∅ = 𝑀𝑀∗( ∅)  , 

3)   𝑀𝑀∗ (𝑅𝑅∗) =  𝑅𝑅∗ = 𝑀𝑀∗(𝑅𝑅∗) . 

4) 𝑀𝑀∗ (𝐴𝐴 ∪ 𝐵𝐵) ⊇ 𝑀𝑀∗(𝐴𝐴)  ∪  𝑀𝑀∗( 𝐵𝐵) .  

5) 𝑀𝑀∗ (𝐴𝐴 ∩ 𝐵𝐵) = 𝑀𝑀∗( 𝐴𝐴)  ∩  𝑀𝑀∗( 𝐵𝐵).  

6) 𝑀𝑀∗(𝐴𝐴 ∪ 𝐵𝐵)  = 𝑀𝑀∗(𝐴𝐴)  ∪  𝑀𝑀∗(𝐵𝐵) .  

7) 𝑀𝑀∗(𝐴𝐴 ∩ 𝐵𝐵)  ⊆  𝑀𝑀∗(𝐴𝐴)  ∩  𝑀𝑀∗(𝐵𝐵) . 

8) If A ⊆ B, then 𝑀𝑀∗(A) ⊆ 𝑀𝑀∗(B) and 𝑀𝑀∗(𝐴𝐴)  ⊆  𝑀𝑀∗(𝐵𝐵) 

9) 𝑀𝑀∗(𝑀𝑀∗( 𝐴𝐴) = 𝑀𝑀∗ (𝑀𝑀∗( 𝐴𝐴)  =  𝑀𝑀∗( 𝐴𝐴).  

10)   𝑀𝑀∗( 𝑀𝑀∗( 𝐴𝐴)) =  𝑀𝑀∗( 𝑀𝑀∗( 𝐴𝐴)) =   𝑀𝑀∗( 𝐴𝐴).    

Proof: (1) Let 𝑥𝑥∗ ∈ 𝑀𝑀∗( 𝐴𝐴) ;  𝑀𝑀∗( 𝐴𝐴) = {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴} then 𝑥𝑥∗ ∈

 𝑥𝑥∗ + 𝑀𝑀∗ ⊆ 𝐴𝐴 ⟹ 𝑀𝑀∗( 𝐴𝐴)  ⊆ 𝐴𝐴. And so let 𝑥𝑥∗ ∈ 𝐴𝐴 since 𝑥𝑥∗ ∈ 𝑥𝑥∗ + 𝑀𝑀∗ then 
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𝑥𝑥∗ ∈  (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐴𝐴 ⟹   (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐴𝐴 ≠ ∅. So 𝑥𝑥∗ ∈ 𝑀𝑀∗( 𝐴𝐴)  ; 𝑀𝑀∗( 𝐴𝐴)   =

{𝑥𝑥∗  ∈ 𝑅𝑅∗:  (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐴𝐴 ≠ ∅} 

Subsequently;   𝑀𝑀∗( A)  ⊆ A ⊆ 𝑀𝑀∗( 𝐴𝐴). 

(2):   𝑀𝑀∗( ∅) = {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ ∅} = ∅ =  {𝑥𝑥∗  ∈ 𝑅𝑅∗:  (𝑥𝑥∗ + 𝑀𝑀∗) ∩

∅ = ∅} = 𝑀𝑀∗( ∅).  And so  𝑀𝑀∗( ∅) =  ∅ = 𝑀𝑀∗( ∅). 

 (3): It shows the way in at (1). 

Since 𝑀𝑀∗ (𝑅𝑅∗) = {𝑥𝑥∗ ∈ 𝑅𝑅∗:  (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝑅𝑅∗} = 𝑅𝑅∗ = {𝑥𝑥∗  ∈ 𝑅𝑅∗:  (𝑥𝑥∗ + 𝑀𝑀∗) ∩

𝑅𝑅∗  ≠ ∅} = 𝑀𝑀∗(𝑅𝑅∗) 

(4): Let 𝑥𝑥∗ ∈ 𝑀𝑀∗ (𝐴𝐴 ∩ 𝐵𝐵) = {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴 ∩ 𝐵𝐵}  ⟺ 𝑥𝑥∗ + 𝑀𝑀∗ ⊆

𝐴𝐴 ∧  𝑥𝑥∗ + 𝑀𝑀∗ ⊆ 𝐵𝐵 ⟺  𝑥𝑥∗ ∈ 𝑀𝑀∗( 𝐴𝐴)  ∧   𝑥𝑥∗ ∈ 𝑀𝑀∗( 𝐵𝐵)   ⟺  𝑥𝑥∗ ∈   𝑀𝑀∗( 𝐴𝐴)  ∩

 𝑀𝑀∗( 𝐵𝐵).   

(5): Since A ⊆ 𝐴𝐴 ∪ 𝐵𝐵 and  𝐵𝐵 ⊆ 𝐴𝐴 ∪ 𝐵𝐵  then 𝑀𝑀∗(𝐴𝐴)  ⊆   𝑀𝑀∗ (𝐴𝐴 ∪ 𝐵𝐵)  ∨

 𝑀𝑀∗( 𝐵𝐵)   ⊆   𝑀𝑀∗ (𝐴𝐴 ∪ 𝐵𝐵)  .  So  𝑀𝑀∗(𝐴𝐴)   ∪  𝑀𝑀∗( 𝐵𝐵)   ⊆  𝑀𝑀∗ (𝐴𝐴 ∪ 𝐵𝐵) .  

(6) and (7): It shows the way in at (4) and (5) respectively. 



 Alostath Issue 27 Fall 2024   

 

819 

 

 (8):  L𝑒𝑒𝑒𝑒 𝑥𝑥∗ ∈ 𝑀𝑀∗( 𝐴𝐴)  ;  𝑀𝑀∗( 𝐴𝐴)   = {𝑥𝑥∗  ∈ 𝑅𝑅∗:  (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐴𝐴 ≠

∅} and Since 𝐴𝐴 ⊆  𝐵𝐵 then (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐵𝐵 ≠ ∅ . So 𝑥𝑥∗ ∈ 𝑀𝑀∗( 𝐵𝐵) ;   𝑀𝑀∗( 𝐵𝐵) =

{𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐵𝐵 ≠ ∅}. Subsequently; 𝑀𝑀∗( 𝐴𝐴)  ⊆  𝑀𝑀∗( 𝐵𝐵). In a similar 

way we can prove 𝑀𝑀∗( 𝐴𝐴) ⊆ 𝑀𝑀∗( 𝐵𝐵). 

(9): 𝑀𝑀∗(𝑀𝑀∗( 𝐴𝐴) = �𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶ (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝑀𝑀∗( 𝐴𝐴)� = �𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆

{𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴}� =  {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴}  =

𝑀𝑀∗( 𝐴𝐴).  And so  𝑀𝑀∗ (𝑀𝑀∗( 𝐴𝐴) = �𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ∩  𝑀𝑀∗( 𝐴𝐴) ≠ ∅� = 

{𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ∩  {𝑥𝑥∗  ∈ 𝑅𝑅∗:  (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴 } ≠ ∅}  

= {𝑥𝑥∗  ∈ 𝑅𝑅∗:  (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴 } = 𝑀𝑀∗( 𝐴𝐴) .         

(10): It shows the way in at (9)∎ 

         Proposition 3.10: let (𝑅𝑅∗, mod 𝑀𝑀∗) be a ∗ -ring approximation space 

and 𝑀𝑀∗ is a ∗ - maximal  ideal of an involution ring R, For any 𝐴𝐴 ⊆  𝑅𝑅∗, the 

following hold: 
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1) 𝑀𝑀∗(𝑅𝑅∗ 𝐴𝐴⁄ ) = 𝑅𝑅∗ 
𝑀𝑀∗( 𝐴𝐴)�   ;  2) 𝑀𝑀∗( 𝑅𝑅∗ 𝐴𝐴⁄ ) =  𝑅𝑅∗

𝑀𝑀∗( 𝐴𝐴) � ; 

3) 𝑀𝑀∗( 𝐴𝐴) = (𝑀𝑀∗( 𝐴𝐴𝑐𝑐  )𝑐𝑐   ;  4)  𝑀𝑀∗( 𝐴𝐴) = (𝑀𝑀∗( 𝐴𝐴𝑐𝑐) )𝑐𝑐 .  

Proof: By using definition the upper and lower approximation of A with 

respect of 𝑀𝑀∗ we find that (1): 𝑀𝑀∗(𝑅𝑅∗ 𝐴𝐴⁄ ) = {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝑅𝑅∗ 𝐴𝐴⁄ } =

 {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴𝑐𝑐} ⟹  (𝑥𝑥∗ + 𝑀𝑀∗) ⊈ 𝐴𝐴 ⟹ 𝐴𝐴 ⊆ (𝑥𝑥∗ + 𝑀𝑀∗)𝑐𝑐  . So  

𝑅𝑅∗

𝑀𝑀∗( 𝐴𝐴)� = {𝑥𝑥∗ ∈ 𝑅𝑅∗: 𝐴𝐴 ⊆ (𝑥𝑥∗ + 𝑀𝑀∗)𝑐𝑐} = 

𝑅𝑅∗ −  {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴}.  Subsequently 𝑀𝑀∗(𝑅𝑅∗ 𝐴𝐴⁄ )  = 𝑅𝑅∗

𝑀𝑀∗( 𝐴𝐴)�  . 

(2): It shows the way in at (1). 

(3):  𝑀𝑀∗( 𝐴𝐴) = {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ 𝐴𝐴} = {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ⊆ (𝐴𝐴𝑐𝑐)𝑐𝑐} =

𝑀𝑀∗( (𝐴𝐴𝑐𝑐)𝑐𝑐) = {𝑥𝑥∗ ∈ 𝑅𝑅∗: (𝑥𝑥∗ + 𝑀𝑀∗) ∩ (𝐴𝐴𝑐𝑐)𝑐𝑐  ≠ ∅} =   (𝑀𝑀∗( 𝐴𝐴𝑐𝑐  )𝑐𝑐 .  

(4): It shows the way in at (3)∎ 
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       Proposition 3.11: let (R*, mod 𝑀𝑀∗) be a ∗ -ring approximation 

space and 𝑀𝑀∗ is ∗ - maximal  ideal of a involution ring R and A, B are non-

empty subset of R*then:  

1) 𝑀𝑀∗(𝐴𝐴) + 𝑀𝑀∗(𝐵𝐵) = 𝑀𝑀∗(𝐴𝐴 + 𝐵𝐵) ;  𝑀𝑀∗( 𝐴𝐴) + 𝑀𝑀∗( 𝐵𝐵) ⊆  𝑀𝑀∗( 𝐴𝐴 + 𝐵𝐵 )  

2) 𝑀𝑀∗(𝐴𝐴. 𝐵𝐵) = 𝑀𝑀∗(𝐴𝐴). 𝑀𝑀∗(𝐵𝐵) ;   𝑀𝑀∗( 𝐴𝐴) . 𝑀𝑀∗( 𝐵𝐵)  ⊆ 𝑀𝑀∗( 𝐴𝐴 . 𝐵𝐵)  

The following example shows Proposition 3.11. 

        Example 3.11: Let us the ring 𝑅𝑅∗ = 𝑍𝑍4 and define   

the involution on 𝑍𝑍4 by 𝑎𝑎∗ =  𝑎𝑎   ∀ 𝑎𝑎 ∈ 𝑍𝑍4 . Suppose the ∗ - maximal ideal is 

{0, 2} and A = {1, 2, 3}, B = {0, 1} are non-empty subset of 𝑅𝑅∗  . 

Solution: Since the involution on 𝑅𝑅 define by  𝑎𝑎∗ =  𝑎𝑎   ∀ 𝑎𝑎 ∈ 𝑍𝑍4, Then 𝑀𝑀∗ 

= 𝑀𝑀 ;  𝑀𝑀∗ is a ∗ - ideal.  For 𝑥𝑥∗ ∈ 𝑅𝑅∗: 𝑥𝑥∗ + 𝑀𝑀∗ = 𝑥𝑥 + 𝑀𝑀 , we get {0∗, 2∗} = 

{0, 2}. So the upper approximation of A, B with respect of 𝑀𝑀∗ as: 𝑀𝑀∗(𝐴𝐴) = ∪

{𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶   (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐴𝐴 ≠ ∅} = 𝑀𝑀(𝐴𝐴) = {𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶   (𝑥𝑥 + 𝑀𝑀) ∩ 𝐴𝐴 ≠ ∅}  =
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{0, 2}  ∪ {1, 3} = {0, 1, 2, 3} = 𝑀𝑀(𝐵𝐵). 𝑎𝑎𝑎𝑎 𝐴𝐴 + 𝐵𝐵 = ∑ (𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ;  𝑎𝑎𝑖𝑖 ∈  𝐴𝐴, 𝑏𝑏𝑖𝑖 ∈

𝐵𝐵  then 𝑀𝑀∗(𝐴𝐴) + 𝑀𝑀∗(𝐵𝐵) =  {0, 1, 2, 3} = 𝑀𝑀∗(𝐴𝐴 + 𝐵𝐵) .  𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 =

   ∑ (𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ;  𝑎𝑎𝑖𝑖 ∈  𝐴𝐴,  𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵 = {0, 1, 2, 3} = 𝑀𝑀∗(𝐴𝐴𝐴𝐴) = ∪ {𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶

  (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐴𝐴𝐴𝐴 ≠ ∅} = 𝑀𝑀(𝐴𝐴) . 𝑀𝑀(𝐵𝐵). And also 𝑀𝑀∗( 𝐴𝐴)  =

{1, 3},   𝑀𝑀∗( 𝐵𝐵)  =  ∅ then 𝑀𝑀∗( 𝐴𝐴). 𝑀𝑀∗( 𝐵𝐵) =  ∅.  Since 𝑀𝑀∗( 𝐴𝐴 . 𝐵𝐵) =

 {𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶  (𝑥𝑥 + 𝑀𝑀∗) ⊆ 𝐴𝐴 . 𝐵𝐵} =  {0, 1, 2, 3}. Hence 𝑀𝑀∗( 𝐴𝐴). 𝑀𝑀∗( 𝐵𝐵) ⊆

𝑀𝑀∗( 𝐴𝐴 . 𝐵𝐵) , And also 𝑀𝑀∗( 𝐴𝐴) + 𝑀𝑀∗( 𝐵𝐵) =  ∅ ⊆  {0, 1, 2, 3} = 𝑀𝑀∗( 𝐴𝐴 +  𝐵𝐵). 

 

 

 

4. Roughness of ∗ - maximal ideals in ∗ -rings. 

        In this section, we introduce the concept of rough ∗ - maximal ideals 

on a ∗ - ring approximation space and give some results on them.  
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        Proposition 4.1: let (R*, mod 𝑀𝑀∗) be a ∗ -ring approximation space 

and 𝑀𝑀∗ be a ∗-  ideal of a involution ring R. If 𝑀𝑀∗ is ∗ - maximal  ideal of a 

involution ring R then  𝑀𝑀∗( 𝐴𝐴) )  𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀∗( 𝐴𝐴)     are   is a ∗ -maximal  ideals of 

a involution ring R. 

Proof: As  𝑀𝑀∗ is an ∗-  ideal of a involution ring R then 𝑀𝑀∗ = 𝑀𝑀;  𝑀𝑀 is an   

ideal of a ring R and 𝑥𝑥∗ + 𝑀𝑀∗ =  𝑥𝑥 + 𝑀𝑀 ⊆ 𝐴𝐴 . There for (𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐴𝐴 =

 (𝑥𝑥 + 𝑀𝑀) ∩ 𝐴𝐴 ≠ ∅. Hence  𝑀𝑀∗( 𝐴𝐴) =   𝑀𝑀( 𝐴𝐴)  and  𝑀𝑀∗(𝐴𝐴) =  𝑀𝑀(𝐴𝐴). 

Subsequently   𝑀𝑀∗( 𝐴𝐴) )  𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀∗( 𝐴𝐴)     are  a ∗ - ideals of an involution ring 

R ∎ 

        Proposition 4.2: let (R*, mod 𝑀𝑀∗) be a ∗ -ring approximation space. If 

𝑀𝑀∗  is a ∗ - maximal  ideal of a involution ring R, For any subset A ⊆ 𝑅𝑅∗ and 

𝑀𝑀∗ ( 𝐴𝐴) ≠ ∅ , then 𝑀𝑀∗( 𝐴𝐴) )  𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀∗( 𝐴𝐴)     are a rough ∗ - maximal  ideals of 

a involution ring R. 
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Proof: As  𝑀𝑀∗ is a is ∗ -  maximal ideal of a involution ring R then 𝑀𝑀∗ = 𝑀𝑀 ⊆

𝑅𝑅 is ∗-maximal ideal. And as  𝑥𝑥∗ + 𝑀𝑀∗ =  𝑥𝑥 + 𝑀𝑀 and 𝐴𝐴 ⊆ 𝑅𝑅∗ then 

(𝑥𝑥∗ + 𝑀𝑀∗) ∩ 𝐴𝐴 =   (𝑥𝑥 + 𝑀𝑀) ∩ 𝑅𝑅∗  ≠ ∅. Hence 𝑀𝑀∗(𝐴𝐴)  is the upper 

approximation of a subset 𝐴𝐴 of R* with respect 

𝑀𝑀∗. From proposition (4.1) we have  𝑀𝑀∗( 𝐴𝐴) )  𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀∗( 𝐴𝐴)     are  ∗

 − ideals of a involution ring 𝑅𝑅 . Since 𝑥𝑥∗ + 𝑀𝑀∗ =  𝑥𝑥∗ + 𝑀𝑀 ⊆

𝐴𝐴 𝑡𝑡hen  𝑀𝑀∗( 𝐴𝐴)   is the lower approximation of a subset 𝐴𝐴 of 

𝑅𝑅 ∗  with respect 𝑀𝑀∗. Hence 𝑀𝑀∗( 𝐴𝐴) )  𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀∗( 𝐴𝐴)     are  rough maximal ∗ -  

ideals of  involution ring R ∎ 

 

5. Rough ∗ - prime and ∗-completely prime ideals in ∗ -ring  
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            In this section, we discuss the rough prime and rough ∗ - completely 

prime ideals on a ∗ - ring approximation space and give some properties of 

such ∗-ideals. 

      Proposition 5.1: let (R*, mod 𝐼𝐼∗) be a ∗ -ring approximation space. 

If 𝑃𝑃∗ is a ∗-prime ideal 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 R such that 𝐼𝐼∗( 𝑃𝑃∗) ≠ ∅ , then 

𝐼𝐼∗( 𝑃𝑃∗)  and  𝐼𝐼∗( 𝑃𝑃∗)  are a rough ∗- prime ideals of 𝑅𝑅∗. 

Proof: Since 𝐼𝐼∗ ⊆ 𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃∗ ⊆ 𝑃𝑃   𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑥𝑥∗ + 𝐼𝐼∗  ⊆ 𝑥𝑥 + 𝐼𝐼  and also (𝑥𝑥∗ + 𝐼𝐼∗  ⊆

𝑃𝑃∗) ⊆ (𝑥𝑥 + 𝐼𝐼 ⊆ 𝑃𝑃). Subsequently 𝐼𝐼∗( 𝑃𝑃∗)   ⊆ 𝐼𝐼( 𝑃𝑃). And since 𝑥𝑥∗ + 𝐼𝐼∗ ∩ 𝑃𝑃∗  ⊆

𝑃𝑃∗ ⊆ 𝑥𝑥 + 𝐼𝐼 ∩ P ≠  ∅ ; 𝑥𝑥 ∈ 𝑅𝑅, 𝐼𝐼 ⊲ 𝑅𝑅 then 𝐼𝐼∗( 𝑃𝑃∗) ⊆

𝐼𝐼( 𝑃𝑃). 𝑆𝑆𝑆𝑆 𝐼𝐼∗( 𝑃𝑃∗)  and  𝐼𝐼∗( 𝑃𝑃∗) are ∗  −ideals of 𝑅𝑅∗ and are a lower and  

upper approximations of  a ∗ −ideal 𝐼𝐼∗ with respect  𝑃𝑃∗ respectively. Now let 

𝐽𝐽∗( 𝑃𝑃∗) 𝑄𝑄∗( 𝑃𝑃∗) ⊆  𝐼𝐼∗( 𝑃𝑃∗). As 𝑃𝑃∗ is a ∗-prime ideal of a involution  
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ring R then 𝐽𝐽∗ ⊆ 𝑃𝑃∗ 𝑜𝑜𝑜𝑜 𝑄𝑄∗ ⊆ 𝑃𝑃∗;  𝐽𝐽∗, 𝑄𝑄∗ ⊲∗ 𝑅𝑅∗. So 𝑥𝑥∗ + 𝐽𝐽∗ ⊆ 𝑃𝑃∗ 𝑜𝑜𝑜𝑜 𝑦𝑦∗ + 𝑄𝑄∗ ⊆

𝑃𝑃∗ for all 𝑥𝑥∗, 𝑦𝑦∗  ∈  𝑅𝑅∗. Hence 𝐽𝐽∗( 𝑃𝑃∗) ⊆  𝐼𝐼∗( 𝑃𝑃∗)  𝑜𝑜𝑜𝑜  𝑄𝑄∗( 𝑃𝑃∗) ⊆ . Thus 

( 𝐼𝐼∗( 𝑃𝑃∗)  𝑖𝑖𝑖𝑖 𝑎𝑎 ∗- prime ideal of 𝑅𝑅∗. As (𝑥𝑥∗ + 𝐽𝐽∗) ∩ 𝑃𝑃∗ ⊆ 𝑃𝑃∗ ≠  ∅  𝑜𝑜𝑜𝑜 ⊆

(𝑦𝑦∗ +  𝑄𝑄∗) ∩ 𝑃𝑃∗ ⊆ 𝑃𝑃∗ ≠  ∅ then 𝐽𝐽∗( 𝑃𝑃∗) ⊆ 𝐼𝐼∗( 𝑃𝑃∗) 𝑜𝑜𝑜𝑜  𝑄𝑄∗( 𝑃𝑃∗) ⊆ 𝐼𝐼∗( 𝑃𝑃∗) . 

Hence 𝐼𝐼∗( 𝑃𝑃∗)   𝑖𝑖𝑖𝑖 𝑎𝑎 ∗- prime ideal of 𝑅𝑅∗. Hence 𝐼𝐼∗( 𝑃𝑃∗)  and   𝐼𝐼∗( 𝑃𝑃∗)  𝑎𝑎𝑎𝑎𝑎𝑎  a 

rough ∗-prime ideals of 𝑅𝑅∗∎  

         Proposition 5.2: let (R*, mod I∗) be a ∗ -ring approximation space. If  

𝐼𝐼∗ rough ∗ - ideal and 𝑃𝑃∗ is a   rough∗- prime  ideal of an involution ring R, 

then 𝑃𝑃∗ ∩ 𝐼𝐼∗ is a rough ∗ - ideal of 𝑅𝑅∗. 

Proof: Since (𝑃𝑃∗ ∩ 𝐼𝐼∗)( 𝐴𝐴) is closed under involution then  

(𝑃𝑃∗ ∩ 𝐼𝐼∗)( 𝐴𝐴)  is a ∗  −  ideals. And Since 𝐼𝐼∗  is rough ∗- ideal  and 𝑃𝑃∗ is a 

rough ∗ - prime  ideal of an involution ring R. Then For any A ⊆ 𝑅𝑅∗ 𝐼𝐼∗( 𝐴𝐴) and 

 𝐼𝐼∗(𝐴𝐴) ) are rough  ∗-  ideals, also 𝑃𝑃∗( 𝐴𝐴) and 𝑃𝑃∗(𝐴𝐴)  are rough prime ∗ -  
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ideals, respectively. Now,  Since 𝑃𝑃∗ ∩ 𝐼𝐼∗ ⊆ 𝐼𝐼∗ and 𝑃𝑃∗ ∩ 𝐼𝐼∗ ⊆ 𝑃𝑃∗ then 𝑃𝑃∗ ∩ 𝐼𝐼∗ is 

a ∗ -ideal of 𝑅𝑅∗. by proposition 3.9. we have  (𝑃𝑃∗ ∩ 𝐼𝐼∗)( 𝐴𝐴) = 𝑃𝑃∗( 𝐴𝐴)  ∩

 𝐼𝐼∗( 𝐴𝐴) = {𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶ (𝑥𝑥∗ + 𝑃𝑃∗) ⊆ 𝐴𝐴} ∩ {𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶ (𝑥𝑥∗ + I∗) ⊆ 𝐴𝐴} =

 �𝑥𝑥∗ ∈ 𝑅𝑅∗ ∶ �𝑥𝑥∗ + (𝑃𝑃∗ ∩ 𝐼𝐼∗)� ⊆ 𝐴𝐴� =  (𝑃𝑃∗ ∩ 𝐼𝐼∗)( 𝐴𝐴). So (𝑃𝑃∗ ∩ 𝐼𝐼∗)( 𝐴𝐴)  is a 

lower approximation of a subset A of with respect  𝑃𝑃∗ ∩ 𝐼𝐼∗. And also As  

 (𝑃𝑃∗ ∩ 𝐼𝐼∗) ⊆ (𝑃𝑃 ∩ 𝐼𝐼)then (𝑃𝑃∗ ∩ 𝐼𝐼∗) ∩  𝐴𝐴 ⊆ (𝑃𝑃 ∩ 𝐼𝐼) ∩  𝐴𝐴 ≠ ∅. Therefore 

(𝑃𝑃∗ ∩ 𝐼𝐼∗)(𝐴𝐴)   is a upper approximation  

  of a subset 𝐴𝐴 of 𝑅𝑅∗ with respect 𝑃𝑃∗ ∩ 𝐼𝐼∗. Hence 

(𝑃𝑃∗ ∩ 𝐼𝐼∗)( 𝐴𝐴)  and (𝑃𝑃∗ ∩ 𝐼𝐼∗)(𝐴𝐴)  are a rough ∗- ideals of a involution ring 𝑅𝑅∎ 

        Proposition 5.3: let (R*, mod 𝑀𝑀∗) be a ∗ -ring approximation space 

then every rough a ∗-maximal ideal is rough ∗-prime ideal in a ∗-ring. 
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Proof: Let ( 𝑀𝑀∗( 𝐴𝐴) , 𝑀𝑀∗( 𝐴𝐴) ) is rough a ∗-maximal ideal of R*. If 𝑀𝑀∗ is 

maximal ideal, then 𝑀𝑀∗ is a prime ideal. There for  𝑀𝑀∗ is ∗-prime ideal [20]. 

Hence ( 𝑀𝑀∗( 𝐴𝐴) , 𝑀𝑀∗( 𝐴𝐴) ) is rough ∗ - prime ideal of  involution ring R∎ 

        Proposition 5.4: let (R*, mod 𝐼𝐼∗) be a ∗ -ring approximation space. If 

𝑃𝑃∗ is a ∗ -completely prim ideal of R*such that  such that 𝐼𝐼∗( 𝑃𝑃∗) ≠  ∅, then 

 𝐼𝐼∗( 𝑃𝑃∗)    𝑎𝑎𝑎𝑎𝑎𝑎   𝐼𝐼∗( 𝑃𝑃∗)  is ∗-completely prim ideal of 𝑅𝑅∗. 

Proof: Let x y and 𝑥𝑥∗𝑦𝑦  ∈ 𝐼𝐼∗( 𝑃𝑃∗) then 𝑥𝑥 𝑦𝑦 + 𝐼𝐼∗ ∩ 𝑃𝑃∗ ≠  ∅ and 𝑥𝑥∗𝑦𝑦 + 𝐼𝐼∗ ∩

𝑃𝑃∗ ≠  ∅ . Since �(𝑥𝑥 + 𝐼𝐼∗)(𝑦𝑦 + 𝐼𝐼)� ∩ 𝑃𝑃∗ ≠  ∅.  So ∃ a b ∈ (𝑥𝑥∗𝑦𝑦 + 𝐼𝐼∗) ∩ 𝑃𝑃∗. 

Thus 𝑎𝑎 ∈ (𝑥𝑥∗ + 𝐼𝐼∗) ∩ 𝑃𝑃∗ or 𝑏𝑏 ∈  (𝑦𝑦 + 𝐼𝐼∗) ∩ 𝑃𝑃∗ . Since 𝑃𝑃∗ is a ∗-completely 

prime ideal of 𝑅𝑅∗  then either a ∈𝑃𝑃∗  or b ∈ 𝑃𝑃∗. 𝑆𝑆o 𝑎𝑎 ∈ (𝑥𝑥 + 𝐼𝐼∗) ∩  𝑃𝑃∗ ≠  ∅ or  

𝑏𝑏 ∈ (𝑦𝑦 + 𝐼𝐼∗) ∩ 𝑃𝑃∗  ≠  ∅. Therefor  either 𝑥𝑥 ∈ 𝐼𝐼∗( 𝑃𝑃∗)   or   𝑦𝑦 ∈

𝐼𝐼∗( 𝑃𝑃∗). Hence 𝐼𝐼∗( 𝑃𝑃∗)  is ∗ −completely prime ideal of 𝑅𝑅∗. Now we prove 

𝐼𝐼∗( 𝑃𝑃∗)  is ∗ −completely prim ideal of 𝑅𝑅∗. Now let 𝑥𝑥 𝑦𝑦 and 𝑥𝑥∗𝑦𝑦  
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∈ 𝐼𝐼∗( 𝑃𝑃∗), then (𝑥𝑥𝑥𝑥 + 𝐼𝐼∗) ⊆ 𝑃𝑃∗ and (𝑥𝑥∗𝑦𝑦 + 𝐼𝐼∗) ⊆ 𝑃𝑃∗, it follows that 

�(𝑥𝑥 + 𝐼𝐼∗)(𝑦𝑦 + 𝐼𝐼∗)� ⊆ 𝑃𝑃∗. Now le t (𝑥𝑥 + 𝐼𝐼∗) ⊆ 𝑃𝑃∗ and  𝑦𝑦 + 𝐼𝐼∗ ⊆ 𝑃𝑃∗. Then there 

exists a ∈ 𝑥𝑥 + 𝐼𝐼∗and b ∈ 𝑦𝑦 + 𝐼𝐼∗.  As 𝑃𝑃∗ is a ∗

−completely prime ideal of 𝑅𝑅∗ then either (𝑥𝑥 + 𝐼𝐼∗) ⊆ 𝑃𝑃∗, or  𝑦𝑦 + 𝐼𝐼∗ ⊆ 𝑃𝑃∗. 

Which is a contradiction. Therefore, either 𝑥𝑥 ∈ 𝐼𝐼∗( 𝑃𝑃∗), 

Or  𝑦𝑦 ∈ 𝐼𝐼∗( 𝑃𝑃∗) . From proposition 5.1   𝐼𝐼∗( 𝑃𝑃∗) and  𝐼𝐼∗( 𝑃𝑃∗) are an ∗

− ideal of 𝑅𝑅∗. Hence 𝐼𝐼∗( 𝑃𝑃∗),   is ∗ −completely prime ideal of 𝑅𝑅∗∎ 

         Proposition 5.5: let (R*, mod 𝐼𝐼∗) be a ∗ -ring approximation space. If 

  𝑃𝑃𝑖𝑖
∗ 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 rough ∗ -completely prime ideals of an involution ring R, then 

(⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼 ) is a rough ∗ - completely prime ideal of an involution ring R. 

Proof: Since 𝑥𝑥∗ ∈ 𝐼𝐼∗ ⊆ 𝑥𝑥∗ + 𝐼𝐼∗ and 𝑃𝑃𝑖𝑖
∗ ⊆ ⋃ 𝑃𝑃∗

𝑖𝑖𝑖𝑖∈𝐼𝐼  for some 𝑖𝑖 ∈ 𝐼𝐼. Then 𝑥𝑥∗ +

𝐼𝐼∗  ∩  𝑃𝑃𝑖𝑖
∗ ⊆ 𝑥𝑥∗ + 𝐼𝐼∗  ∩ ⋃ 𝑃𝑃∗

𝑖𝑖𝑖𝑖∈𝐼𝐼 ≠ ∅. Hence 𝐼𝐼∗(⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼 )  is a upper 

approximation of  a ∗ −ideal 𝐼𝐼∗ with respect  ⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼 . As  𝑃𝑃𝑖𝑖

∗ rough ∗
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 −completely prime ideals of an involution ring 𝑅𝑅 then 𝑥𝑥∗ + 𝐼𝐼∗ ⊆ 𝑃𝑃𝑖𝑖
∗ ⊆

⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼  for some 𝑖𝑖 ∈ 𝐼𝐼. Thus 𝑥𝑥∗ + 𝐼𝐼∗ ⊆ ⋃ 𝑃𝑃∗

𝑖𝑖𝑖𝑖∈𝐼𝐼  Hence 𝐼𝐼∗(⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼 )  is a 

lower approximation of  a ∗ −ideal 𝐼𝐼∗ with respect  ⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼 . Now, let 𝑥𝑥𝑥𝑥 ∈

 ⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥∗𝑦𝑦 ∈ ⋃ 𝑃𝑃∗

𝑖𝑖𝑖𝑖∈𝐼𝐼   , by proposition , we have that 𝐼𝐼∗(⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼 ) =

 ⋃ 𝐼𝐼∗(𝑃𝑃∗
𝑖𝑖) 𝑖𝑖∈𝐼𝐼 . Thus 𝑥𝑥𝑥𝑥 ∈ 𝐼𝐼∗(𝑃𝑃∗

𝑖𝑖)  and 𝑥𝑥∗𝑦𝑦 ∈ 𝐼𝐼∗(𝑃𝑃∗
𝑖𝑖)  for some 𝑖𝑖 ∈ 𝐼𝐼. As 

𝐼𝐼∗(𝑃𝑃∗
𝑖𝑖)  is ∗-prime ideals of an involution ring R, that is, 𝑥𝑥 ∈ 𝑃𝑃∗

𝑖𝑖  𝑜𝑜𝑜𝑜 𝑦𝑦 ∈ 𝑃𝑃∗
𝑖𝑖. 

Thus, 𝑥𝑥 ∈ ⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼  𝑜𝑜𝑜𝑜 𝑦𝑦 ∈ ⋃ 𝑃𝑃∗

𝑖𝑖 . Hence𝑖𝑖∈𝐼𝐼  ⋃ 𝑃𝑃∗
𝑖𝑖𝑖𝑖∈𝐼𝐼  a ∗ - rough completely 

prime ideal of an involution ring R∎ 

        Example 5.6: Let a ring R* = 𝑍𝑍 and the involution is defined by 𝑎𝑎∗= 𝑎𝑎  

∀ 𝑎𝑎 ∈  . Let 𝐼𝐼∗= (6) is a ∗ - ideal, 𝑃𝑃∗
𝑖𝑖= (3), (5), (7);  𝑖𝑖 ∈ 𝐼𝐼 = {1, 2, 3}. It is 

clearly 𝐼𝐼∗ = 𝐼𝐼 and 𝑃𝑃∗
𝑖𝑖 = 𝑃𝑃𝑖𝑖  ∀  𝑖𝑖 ∈ 𝐼𝐼. For 𝑥𝑥∗ ∈ 𝑅𝑅∗  : 𝑥𝑥∗+ 𝐼𝐼∗= 𝑥𝑥 + 𝐼𝐼 then 𝑥𝑥∗+ (6) 

⊈ ⋂ 𝑃𝑃𝑖𝑖
∗

𝑖𝑖∈𝐼𝐼 = ∅ and 𝑥𝑥∗ + (6) ⊈ 𝑃𝑃∗
𝑖𝑖  ;  𝑖𝑖 ∈ 𝐼𝐼.  Also  𝑥𝑥∗  +  (6)  ∩ (⋃ 𝑃𝑃∗

𝑖𝑖𝑖𝑖∈𝐼𝐼 ) ≠ ∅ 

and 𝑥𝑥∗  +  (6) ∩ 𝑃𝑃∗
𝑖𝑖 ≠ ∅. Thus 𝐼𝐼∗(⋃ 𝑃𝑃∗

𝑖𝑖𝑖𝑖∈𝐼𝐼 ) =  ⋃ 𝐼𝐼∗(𝑃𝑃∗
𝑖𝑖) 𝑖𝑖∈𝐼𝐼  and 
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𝐼𝐼∗( ⋂ 𝑃𝑃𝑖𝑖
∗

𝑖𝑖∈𝐼𝐼 ) ≠ ⋂ 𝐼𝐼∗( 𝑃𝑃𝑖𝑖
∗)𝑖𝑖∈𝐼𝐼 . In general, ⋂ 𝑃𝑃𝑖𝑖

∗
i∈I  is not a rough ∗ - completely 

prime ideal of R*. 

       Proposition 5.7: let (R*, mod 𝐼𝐼∗)be a ∗ -ring approximation space. If 

𝑃𝑃∗ is a ∗-completely prime ideal of R* such that  such that 𝐼𝐼∗( 𝑃𝑃∗) ≠  ∅ , then 

( 𝐼𝐼∗( 𝑃𝑃∗)  , 𝐼𝐼∗( 𝑃𝑃∗) ) is a rough ∗-completely prime ideal of R*. 

Proof: This follows from Propositions 5.1and 5.4. 

Conclusion:  

       In this paper, our study of ∗- maximal and ∗ -  prime ideals provide 

valuable insights into the structure of ∗-ring approximation space. The 

properties we discussed contribute to enhancing our understanding of these 

ideals and open new avenues for future research in the theory of ∗-rings.  
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 الملخص:

الالتفاف�ة الاعظم�ة �النس�ة لعلاقة التكافؤ المولدة بواسطة في هذه الورقة قدمنا مفهوم الخشونة للمثال�ات 

المثالي الالتفافي الاعظمي في الفضاء الحلقي الالتفافي التقر�بي. و�ذلك ناقشنا المثال�ات الالتفاف�ة الأول�ة 

ا) (الأول�ة تماما) الخشنة. وقدمنا عدة خصائص للمثال�ات الالتفاف�ة الاعظم�ة والاول�ة (الأول�ة تمام

 الخشنة في الفضاء الحلقي الالتفافي التقر�بي.
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