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Complete vector field on an open ball 

*D. N.M.Ben yousif 

Abstract: -The theorem concerned in this paper has been proved before by the 

author, but in this paper the author shall give a new proof using the idea of 

lipschitzian method which give us a lot of results to formulate.  

1. Introduction:- 

 The domain of real cartan triple factors Hilbert balls play a distinguish role: 

there gauge function can let the JB- norm of several different red JB- triple 

factors. The later fact seems to be one of the main, obstructs on the way to pure 

real geometric theory of JB- triples, and it is commonly agreed that a deep 

understanding of the structure of the complete real polynomial vector fields of 

Hilbert balls can be curtail in this direction. 

 Mangasarion and from Ovitz, are shown to have natural extensions valid 

when the mappings are only lips chizz continuo-us. Involved in these extensions 

is a compact, convex set of linear mappings called the general zed derivative, 
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which can be assigned to any lips chit Zion continuous mapping and point of its 

(open) domain and which reduces to the us used derivative whenever the mapping 

is continuously differentiable.  

2. The main result: 

2.1 Definition: let a function f: Rn→ Rnwe may identify f(x) 𝜕

𝜕𝑡
with f. The vector 

field f(x) 𝜕

𝜕𝑡
 is said to be complete in B= {x:<x . x>< 1};B Rn if for Rvery x0∈ B 

there is differentiable function  t : IR →  B where   x(0) = x0 and 𝜕

𝜕𝑡 
 𝑓 =

𝑓(𝑥(𝑡))      t  ∈ R.(BenYousif, 2005, pp1-10) 

2.2 Theorem: Each tangent polynomial vector field belongs to the lie-algebra 

generated by the field 𝑃𝑎,𝑄𝑎 , ( a ∈ H) where Pa: x →a - <x,a> x . Where 

Qa: x → a- [2<x,a>-<x,x>a].(Willard, 1968 & Hochschild, 1965) 

Proof: Let Pa: x →a-<x,a>x so   

As known that {𝑎𝑏𝑐}𝑠𝑝𝑖𝑛= <a,b> c+<a,b>a-<a,c> b  

Qa: x→a- {𝑥𝑎𝑥}𝑠𝑝𝑖𝑛= a- 2<x,a> x+ <x,x>a. 

U 
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And {𝑎𝑏𝑐}𝐇𝐢𝐥𝐥 = 1

2
<a,b> c+ 1

2
<a,b> a,pa: x →a-{xax}Hill  then Qa= 2Pa 

Pa = a-<x,a> x and Q = a-2<x,a>x + <x,x>a    Qa-Pa = - <x,a> x+ <x,x> a. 

{a b x}Hill = 1

2
<a,b> x + 1

2
<x,b>a. 

{b a x} Hill = 1

2
<b, a> x + 1

2
< 𝑥, 𝑎 > 𝑏  (a o b – b o a) x = 1

2
< x,b> a - 1

2
< 𝑥, 𝑎 > 𝑏 

. 

Qa-Pa=<x,x>a - <x,a> b =2(a o x - x o a) x 2(a o b – b o a) = <x,b> a - <x,a> 

b  

Pa= a-<x,a> x     and Qa= a- 2<x,a> x+ <x,x> a  2 Pa-Qa = a-<x,x>a = (1-

<x,x>) a  

Span {Pa,2Pa – Qa}∋ (Qa – Pa)  

Span {Pa,Qa} = span { Pa,(1-<x,x>)a}  .  Then Qa-Pa = -(2Pa – Qa) + Pa =Qa 

– 2Pa.   That's mean 2(a o x – x o a) x = - (1-<x,x>)a + Pa  

Pa- (1-<x,x>) a =a - <x,a>x – a +<x,x>a = <x,x>a -<x,a>x , . 

[P, Q] a Which Complete the theorem.  



 
 
 
 
 
 
 

 

7 
 

 

 

2.3 Theorem Let𝑝− ∈Pol / lRn, lRn). Then the vector field𝑝−(x) 𝜕

𝜕𝑥
 is 

 Complete in the unit ball𝐵−if𝑝− 𝑖𝑠 finite linear Compination of the Mappings 𝑅− 

(x), <𝑅−(x), x> x, (1-<x,x>)Q(x) Where Q, 𝑅− ∈ pol(Rn, Rn) .(Benyousif, 2004 

&stacho, 2001) 

Proof: let P denoted the set of all polynomials 𝑝− ∈Po (lRn, lRn) such that the 

vector field 𝑝− 𝜕

𝜕𝑥
is Complete in B. Since B is (real analytic sub manifold of lRn 

with analytic boundary 𝜕B, for a polynomial𝑝− ∈ pol (lRn, lRn) we have: 

𝑝− ∈ P if 𝑝−is tangent to𝜕B ,That is p={𝑝− ∈

𝑝𝑜𝑙( lRn , lRn)𝑝−(x1,x2,…..xn)⫠(x1,x2,…..xn ), 𝑝−⫠e , for x1,x2,…..xn∈ lR and 𝑥1
2 +

 𝑥2
2 + ⋯ 𝑥𝑛

2 = 1}. 

 Now give any polynomial mapping (A) such that A: lRn→ mat (-) (N,iR) we 

have < xA (x) . x>= < x, xA(x) ⫟> = < x,x (-A(x))> = - <xA(x), x>. 
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 Thus necessarily <xA(x), x> = 0 that xA(x)⫠x on the whole space lRn in 

particular e A(e) ⫠e ∀ unit vector which mean that x→xA(x) is complete polynomial 

vector field of second degree in unit    spheres =  𝜎B      S= 𝜎B = (𝑥1
2 +  𝑥2

2 +

⋯ 𝑥𝑛
2) =1 <x,x>. 

 Conversely: let v be complete polynomial vector field on𝜎B = s. we know 

that v(x) =∑ 𝑣𝑘(𝑥) , 𝑉𝑘(𝑥)  .𝑛
𝑘=1 for Some scalar-valued polynomials𝑣𝑘: lRn→

𝑅 with the fundamental vector fields𝑉𝑘(x) = ek- <𝑒𝑘, x>=ek- xk∑ 𝑥𝑖𝑒𝑖 .
𝑛
𝑖=1  

Since the function [1- (𝑥1
2 + ... +𝑥𝑛

2)] vanishes on 𝜕B= s the vector field:-  

𝑉−(x)= v (x) - [1-(𝑥1
2, +…..+𝑥𝑛

2)] ∑ 𝑣𝑘(𝑥) 𝑒𝑘  .𝑛
𝑘=1 coincides with on the Spheres. 

However, with the standard matrices 𝐸𝑖𝑘 with 1 at (i, k)-entry and o else where 

we can write:𝑉− (𝑥) = ∑ 𝑣𝑘
𝑛
𝑘=1 (𝑥) [𝑒𝑘 −  𝑥𝑘 ∑ 𝑥𝑖 𝑒𝑖𝑛

𝑖 ] – [ 1- (𝑋1
2, +…..+ 𝑥𝑛

2 

)]∑ 𝑣𝑘(𝑥) 𝑒𝑘
𝑛
𝑘=1 =∑ 𝑣𝑘(𝑥) ∑ 𝑥𝑖 [𝑥𝑖𝑒𝑘− 𝑥𝑘𝑒𝑖]  𝑛

𝑖=1
𝑛
𝑘=1 = ∑ 𝑣𝑘

𝑛
𝑘=1 (𝑥) ∑ 𝑥𝑖𝑥𝑘

𝑛
𝑖=1  [𝐸𝑖𝑘 −

𝐸𝑘𝑖]= x A(x) where , A(x) =∑ (𝑥𝑖𝑣𝑘(𝑥) −  𝑥𝑘𝑣𝑖(𝑥))1≤𝑖<𝑘≤𝑛 [𝐸𝑖𝑘− 𝐸𝑘𝑖] is a 

polynomial map from Rn in to mat (-) (N,R). 

 Now P-= xA(x)- < xA(x), x> x + (1- < x,x>) Q(x). 
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<P- (e), e>= < (eA(e)- <eA(e) , e>e + (1- <e,e>) Q(e)), e>. 

<P- (e), e>= 0.   Which completethe proof.  

Remark: let Vk: x → ek -<ek,x>x  with , k=1,2,……n, then every complete 

polynomial vector field on the sphere s = 𝜕B, where B an open unit ball   (S= 

𝜕B =  ∑ 𝑥𝑖
2𝑁

𝑖=1 =1) Coincides with some vector field of the form v(x) = 

∑ 𝑝𝑘(𝑥)𝑣𝑘(𝑥)𝑛
𝑘=1  when restricted to S where p1,….,pn: RN→R are appropriate 

polynomials. 

Example 1 : Although no non vanishing continuous vector field exists on sphere 

s2 there are three mutually per appendicular vector field on s3⊂ R4 , that is a frame 

fields, let s3 = { (x1,x2,x3, x4), ∑ 𝑥𝑖
2  = 14

𝑖=1  } and let vector field be given by:  

X = -x2
𝜕

𝜕𝑋1
 + x1

𝜕

𝜕𝑋2
 + x4 𝜕

𝜕𝑋3
 – x3

𝜕

𝜕𝑋4
  . 

y = -x3
𝜕

𝜕𝑋1
 – x4

𝜕

𝜕𝑋2
 + x1

𝜕

𝜕𝑋3
 – x2

𝜕

𝜕𝑋4
 . 

z =-x4
𝜕

𝜕𝑋1
 + x3

𝜕

𝜕𝑋2
 – x2

𝜕

𝜕𝑋3
 + x1

𝜕

𝜕𝑋4
 . 

At p= (x1, x2, x3, x4). Since at each point these are mutually Orthogonal Unit 

vectors in IR4, they are independent. To see that they tangent to s it's enough to 
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take inner product with x radius vector from the original to the point ones, 

<𝑥→,x> =0 <𝑧→,x> = 0) =0 

<𝑦→, x> =0. 

Example2: Assume v 𝜖 Pol (IR3, IR3) and< v (e).e =0 for <e,e> =1 <v(e).e>=0 

mean that v is tangent to unit – sphere. 

Let a = v(0),w=v-va then w,also tangent to the unit-Spherebut already w(0)=0  

𝑒𝑣𝜑 = (

cos 𝑣
𝑠𝑖𝑛𝑣 𝑐𝑜𝑠𝜙
𝑠𝑖𝑛𝑣 cos 𝜙

)Then< w (𝑒𝑣𝜑), 𝑒𝑣𝜑 >= 0. 

𝜕

𝜕𝑢

𝜕

𝜕𝑣
< w(ev𝜑) , ev𝜑> = 0 , 𝜕

𝜕𝑢
 (ev𝜑) =   (

0
−𝑠𝑖𝑛𝑣 𝑠𝑖𝑛𝜑
sin 𝑣 𝑐𝑜𝑠𝜑

) 

𝜕

𝜕𝑢
  ( 𝜕

𝜕𝑢
  (ev𝜑))   =(

0
−𝑐𝑜𝑠𝑣 𝑠𝑖𝑛𝜑
cos 𝑣 𝑐𝑜𝑠𝜑

) 

Example3:  

P:B (Rn) → Rn complete analytic  filed[ 1− <  𝑥, 𝑥 >]
𝟏

𝒏P(x)= Pn(x) . 
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