| Issue 19 | AL-OSTATH Fall 2020 |
| :--- | :--- | :--- |

Complete vector field on an open ball

*D. N.M.Ben yousif

Abstract: - The theorem concerned in this paper has been proved before by the author, but in this paper the author shall give a new proof using the idea of lipschitzian method which give us a lot of results to formulate.

1. Introduction:-

The domain of real cartan triple factors Hilbert balls play a distinguish role: there gauge function can let the JB- norm of several different red JB- triple factors. The later fact seems to be one of the main, obstructs on the way to pure real geometric theory of JB- triples, and it is commonly agreed that a deep understanding of the structure of the complete real polynomial vector fields of Hilbert balls can be curtail in this direction.

Mangasarion and from Ovitz, are shown to have natural extensions valid when the mappings are only lips chizz continuo-us. Involved in these extensions is a compact, convex set of linear mappings called the general zed derivative,
which can be assigned to any lips chit Zion continuous mapping and point of its (open) domain and which reduces to the us used derivative whenever the mapping is continuously differentiable.

2. The main result:

2.1 Definition: let a function $f: R^{n} \rightarrow R^{n}$ we may identify $f(x) \frac{\partial}{\partial t}$ with f. The vector field $f(x) \frac{\partial}{\partial t}$ is said to be complete in $B=\{x:<x . x><1\} ; B R^{n}$ if for Rvery $x_{0} \in B$ there is differentiable function $\mathrm{t}: \mathrm{IR} \rightarrow \mathrm{B}$ where $\mathrm{x}(0)=\mathrm{x}_{0}$ and $\frac{\partial}{\partial t} f=$ $f(x(t)) \quad \mathrm{t} \in \mathrm{R} .($ BenYousif, 2005, pp1-10)
2.2 Theorem: Each tangent polynomial vector field belongs to the lie-algebra generated by the field $P_{a}, Q_{a},(\mathrm{a} \in \mathrm{H})$ where $\mathrm{Pa}: \mathrm{x} \rightarrow \mathrm{a}-<\mathbf{x}, \mathrm{a}>\mathrm{x}$. Where Qa: $\mathrm{x} \rightarrow \mathrm{a}-$ [2<x,a>-<x,x>a].(Willard, $1968 \&$ Hochschild, 1965)

Proof: Let Pa: $x \rightarrow a-<\mathbf{x}, a>x$ so

As known that $\{a b c\}_{\text {spin }}=<a, b>c+<a, b>a-<a, c>b$

Qa: $\mathrm{x} \rightarrow \mathrm{a}-\{x a x\}_{\text {spin }}=\mathrm{a}-2<\mathbf{x}, \mathrm{a}>\mathrm{x}+<\mathbf{x}, \mathrm{x}>\mathrm{a}$.

And $\{a b c\}_{\text {Hill }}=\frac{1}{2}<a, b>c+\frac{1}{2}<a, b>a, p a: x \rightarrow a-\{x a x\}_{\text {Hill }}$ then $\mathrm{Qa}=2 \mathrm{~Pa}$
$P a=a-<x, a>x$ and $Q=a-2<x, a>x+<x, x>a \quad Q a-P a=-<x, a>x+<x, x>a$.
$\{\mathrm{a} b \mathrm{x}\}_{\text {Hill }}=\frac{1}{2}<a, b>x+\frac{1}{2}<\mathbf{x}, \mathrm{b}>\mathrm{a}$.
$\{b \text { a x }\}_{\text {Hill }}=\frac{1}{2}<b, a>x+\frac{1}{2}<x, a>b\left(a\right.$ o b -b o a) $x=\frac{1}{2}<x, b>a-\frac{1}{2}<x, a>b$
$\mathrm{Qa}-\mathrm{Pa}=<\mathrm{x}, \mathrm{x}>\mathrm{a}-<\mathrm{x}, \mathrm{a}>\mathrm{b}=2(\mathrm{a} \circ \mathrm{x}-\mathrm{x}$ o a) $\mathrm{x} 2(\mathrm{a}$ o b -boa)=<x,b>a-<x,a>
b
$\mathrm{Pa}=\mathrm{a}-<\mathrm{x}, \mathrm{a}>\mathrm{x} \quad$ and $\mathrm{Qa}=\mathrm{a}-2<\mathrm{x}, \mathrm{a}>\mathrm{x}+<\mathrm{x}, \mathrm{x}>\mathrm{a} 2 \mathrm{~Pa}-\mathrm{Qa}=\mathrm{a}-<\mathrm{x}, \mathrm{x}>\mathrm{a}=(1-$ $<x, x>) a$

Span \{Pa,2Pa - Qa\}Э (Qa - Pa)

Span $\{\mathrm{Pa}, \mathrm{Qa}\}=\operatorname{span}\{\mathrm{Pa},(1-<\mathrm{x}, \mathrm{x}>) \mathrm{a}\}$. Then $\mathrm{Qa}-\mathrm{Pa}=-(2 \mathrm{~Pa}-\mathrm{Qa})+\mathrm{Pa}=\mathrm{Qa}$
$-2 P a$. That's mean 2(a o $x-x$ o a) $x=-(1-<x, x>) a+P a$
$P a-(1-<x, x>) a=a-<x, a>x-a+<x, x>a=<x, x>a-<x, a>x,$.
[$P, Q]$ a Which Complete the theorem.
2.3 Theorem Let $\left.p^{-} \in \operatorname{Pol} / \mathbb{R}^{n}, \mathbb{R}^{n}\right)$. Then the vector field $p^{-}(x) \frac{\partial}{\partial x}$ is

Complete in the unit ball B^{-}if p^{-}is finite linear Compination of the Mappings R^{-} $(\mathrm{x}),<R^{-}(\mathrm{x}), \mathrm{x}>\mathrm{x},(1-<\mathrm{x}, \mathrm{x}>) \mathrm{Q}(\mathrm{x})$ Where $\mathrm{Q}, R^{-} \in \operatorname{pol}\left(\mathrm{R}^{\mathrm{n}}, \mathrm{R}^{\mathrm{n}}\right)$. .(Benyousif, 2004 \&stacho, 2001)

Proof: let P denoted the set of all polynomials $p^{-} \in \operatorname{Po}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that the vector field $p^{-} \frac{\partial}{\partial x}$ is Complete in B. Since B is (real analytic sub manifold of \mathbb{R}^{n} with analytic boundary $\partial \mathrm{B}$, for a polynomial $p^{-} \in \operatorname{pol}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ we have:
$p^{-} \in \mathrm{P}$ if $p^{- \text {is }}$ tangent to $\partial \mathrm{B}$,That is $\mathrm{p}=\left\{p^{-} \in\right.$ $\operatorname{pol}\left(\mathrm{IR}^{\mathrm{n}}, \mathrm{IR}^{\mathrm{n}}\right) p^{-}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . \mathrm{x}_{\mathrm{n}}\right)_{\perp}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . \mathrm{x}_{\mathrm{n}}\right), p^{-} \perp \mathrm{e}$, for $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . \mathrm{x}_{\mathrm{n}} \in \operatorname{RR}$ and $x_{1}^{2}+$ $\left.x_{2}^{2}+\cdots x_{n}^{2}=1\right\}$.

Now give any polynomial mapping (A) such that $A: \mathbb{R}^{n} \rightarrow$ mat ${ }^{(-)}(N, i R)$ we have $\langle x A(x) \cdot x\rangle=\left\langle x, x A(x)^{\tau\rangle}=\langle x, x(-A(x))\rangle=-\langle x A(x), x\rangle\right.$.

Thus necessarily $\langle x A(x), x\rangle=0$ that $x A(x)_{\perp} x$ on the whole space \mathbb{R}^{n} in particular e $A(e) \perp e \forall$ unit vector which mean that $x \rightarrow x A(x)$ is complete polynomial vector field of second degree in unit spheres $=\sigma \mathrm{B} \quad \mathrm{S}=\sigma \mathrm{B}=\left(x_{1}^{2}+x_{2}^{2}+\right.$ $\left.\cdots x_{n}^{2}\right)=1<\mathrm{x}, \mathrm{x}>$.

Conversely: let v be complete polynomial vector field on $\sigma \mathrm{B}=\mathrm{s}$. we know that $\mathrm{v}(\mathrm{x})=\sum_{k=1}^{n} v_{k}(x), V_{k}(x)$ for Some scalar-valued polynomials $v_{k}: \quad \mathbb{R}^{n} \rightarrow$ R with the fundamental vector fields $V_{k}(\mathrm{x})=\mathrm{e}_{\mathrm{k}}-\left\langle e_{k}, \mathrm{x}\right\rangle=\mathrm{e}_{\mathrm{k}}-\mathrm{x}_{\mathrm{k}} \sum_{i=1}^{n} x_{i} e_{i}$.

Since the function $\left[1-\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)\right]$ vanishes on $\partial \mathrm{B}=\mathrm{s}$ the vector field:-
$V^{-}(\mathrm{x})=\mathrm{v}(\mathrm{x})-\left[1-\left(x_{1}^{2},+\ldots .+x_{n}^{2}\right)\right] \sum_{k=1}^{n} v_{k}(x) e_{k}$. coincides with on the Spheres. However, with the standard matrices $E_{i k}$ with 1 at (i, k)-entry and o else where we can write: $V^{-}(x)=\sum_{k=1}^{n} v_{k}(x)\left[e_{k}-x_{k} \sum_{i}^{n} x i e i\right]-\left[1-\left(X_{1}^{2},+\ldots .+x_{n}^{2}\right.\right.$ $)] \sum_{k=1}^{n} v_{k}(x) e_{k}=\sum_{k=1}^{n} v_{k}(x) \sum_{i=1}^{n} x_{i}\left[x_{i} e_{k-} x_{k} e_{i}\right]=\sum_{k=1}^{n} v_{k}(x) \sum_{i=1}^{n} x_{i} x_{k}\left[E_{i k}-\right.$ $\left.E_{k i}\right]=\mathrm{x} \mathrm{A}(\mathrm{x})$ where, $\mathrm{A}(\mathrm{x})=\sum_{1 \leq i<k \leq n}\left(x_{i} v_{k}(x)-x_{k} v_{i}(x)\right)\left[E i_{k-} E_{k i}\right]$ is a polynomial map from R^{n} in to mat ${ }^{(-)}(N, R)$.

Now $\mathrm{P}^{-}=x A(x)^{-}<x A(x), x>x+(1-<x, x>) Q(x)$.
$<P^{-}(e), e>=<(e A(e)-<e A(e), e>e+(1-<e, e>) Q(e)), e>$.
$<\mathrm{P}^{-}(\mathrm{e}), \mathrm{e}>=0$. Which completethe proof.

Remark: let $V_{k}: x \rightarrow e_{k}-<e_{k}, x>x$ with , $k=1,2, \ldots \ldots . n$, then every complete polynomial vectc • field on the sphere $s=\partial B$, where B an open unit ball $\quad(S=$ $\left.\partial \mathrm{B}=\sum_{i=1}^{N} x_{i}^{2}=1\right)$ Coincides with some vector field of the form $\mathrm{v}(\mathrm{x})=$ $\sum_{k=1}^{n} p_{k}(x) v_{k}(x)$ when restricted to S where $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}: \mathrm{R}^{\mathrm{N}} \rightarrow \mathrm{R}$ are appropriate polynomials.

Example 1:Although no non vanishing continuous vector field exists on sphere s^{2} there are three mutually per appendicular vector field on $s^{3} \subset R^{4}$, that is a frame fields, let $\mathrm{s}^{3}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right), \sum_{i=1}^{4} x_{i}^{2}=1\right\}$ and let vector field be given by:

$$
\begin{aligned}
& X=-x_{2} \frac{\partial}{\partial X_{1}}+x_{1} \frac{\partial}{\partial X_{2}}+x_{4} \frac{\partial}{\partial X_{3}}-x_{3} \frac{\partial}{\partial X_{4}} . \\
& y=-x_{3} \frac{\partial}{\partial X_{1}}-x_{4} \frac{\partial}{\partial X_{2}}+x_{1} \frac{\partial}{\partial X_{3}}-x_{2} \frac{\partial}{\partial X_{4}} . \\
& z=-x_{4} \frac{\partial}{\partial X_{1}}+x_{3} \frac{\partial}{\partial X_{2}}-x_{2} \frac{\partial}{\partial x_{3}}+x_{1} \frac{\partial}{\partial X_{4}} .
\end{aligned}
$$

At $p=\left(x_{1}, x 2, x 3, x 4\right)$. Since at each point these are mutually Orthogonal Unit vectors in \mathbb{R}^{4}, they are independent. To see that they tangent to s it's enough to
take inner product with x radius vector from the original to the point ones,
$\left\langle x \rightarrow, \mathrm{x}>=0<z^{\rightarrow}, \mathrm{x}>=0\right)=0$
$\langle y \rightarrow, x>=0$.

Example2: Assume $v \in \operatorname{Pol}\left(\mathrm{R}^{3}, \mathrm{IR}^{3}\right)$ and $<\mathrm{v}(\mathrm{e}) \cdot \mathrm{e}=0$ for $\langle\mathrm{e}, \mathrm{e}\rangle=1<\mathrm{v}(\mathrm{e}) \cdot \mathrm{e}>=0$ mean that v is tangent to unit - sphere.

Let $\mathrm{a}=\mathrm{v}(0), \mathrm{w}=\mathrm{v}-\mathrm{va}$ then w , also tangent to the unit-Spherebut already $\mathrm{w}(0)=0$
$e_{v \varphi}=\left(\begin{array}{c}\cos v \\ \operatorname{sinv} \cos \phi \\ \operatorname{sinv} \cos \phi\end{array}\right)$ Then< $\mathrm{w}\left(e_{v \varphi}\right), e_{v \varphi}>=0$.
$\frac{\partial}{\partial u} \frac{\partial}{\partial v}<\mathrm{w}\left(\mathrm{e}_{v} \varphi\right), \mathrm{e}_{\mathrm{v}} \varphi>=0, \frac{\partial}{\partial u}\left(\mathrm{e}_{\mathrm{v}} \varphi\right)=\left(\begin{array}{c}0 \\ -\sin v \sin \varphi \\ \sin v \cos \varphi\end{array}\right)$
$\frac{\partial}{\partial u}\left(\frac{\partial}{\partial u}\left(\mathrm{e}_{v} \varphi\right)\right)=\left(\begin{array}{c}0 \\ -\cos v \sin \varphi \\ \cos v \cos \varphi\end{array}\right)$

Example3:

$\mathrm{P}: \mathrm{B}\left(\mathrm{R}^{\mathrm{n}}\right) \rightarrow \mathrm{R}^{\mathrm{n}}$ complete analytic filed $[1-<x, x>]^{\frac{1}{n}} \mathrm{P}(\mathrm{x})=\mathrm{P}^{\mathrm{n}}(\mathrm{x})$.

$$
\mathbf{P}_{\mathrm{n}}(\mathbf{x})=\phi_{n}\left(x^{2}+y^{2}\right) \mathbf{p}(\mathbf{x})
$$

Issue 19

References:

1- N.M. BEN Yousif, Complete polynumial vector fields on simplexes, Electronic Journal of Qualitative Theory of Differential Equations No 5. (2004), p.p.(110).

2- N.M. BEN Yousif. Complete polynomial vector fields in unit ball, e-journal AMAPN. Vol. (20) (1) 2004, Spring.

3- L.L. Stachó, A counter example concerning contractive Projection of real JB'triples, Publ. Math., Debrecen, 58(2001), 223-230.

4- ROBERT J. Walker. Algebraic curves, Princeton-New Jersey, 1950.

5- Lie Theory and Special Function by willard miller, Jr. New York and London 1968.

6- The structure of Lie group-G. Hochschild - 1965.

