

Complete and Analytic Vector Field On \boldsymbol{R}^{N}

"D. N.M.Ben yousif

Abstract

:-

In this paper the author shall give proofs of three of most important theorems on complete polynomial and analytical vector fields.

1. Introduction:-

During my work on polynomial vector fields we proved some Theorems and lemmas which describes how looks like the behavior of complete vector fields with its domain, in this paper we give some Theorems ,lemmas and examples with graphs to show how clean our results .

The theorem of analytic function will be the key of analytical vector fields on an open Euclidean ball subset from R^{N}.
*Staff member at faculty of science Tripoli Libya

2. Theorem.

Let $f: R^{N} \rightarrow R$ be a polynomial such that $f(x)=0$ for $x \in S$ where $S=$ $(\langle x, x\rangle=1)$. Then there exists a polynomial $Q: R^{N} \rightarrow R$, such that $f(x)=$ $(1-\langle x, x\rangle) Q(x)$.

Proof. Let $g: B \rightarrow R$ be function on the unit ball $B:(\langle x, x\rangle<1)$, defined by $g(x)=\frac{f(x)}{(1-\langle x, x\rangle)}$, the function g is analytic, since it is the quotient of two polynomials. (Benyousif, 2004)

Thus $g(x)=\sum_{k=0}^{\infty} g_{k}(x)$ where g_{k} are k-homogeneous polynomial on R^{N}. We have $f(\pm e)=0$ whenever $\langle e, e\rangle=1$, there exists a polynomial $P_{e}: R \rightarrow R$ of degree $\leq \operatorname{deg} f-2$ such that $\left(1-t^{2}\right) P_{e}(t)=f(t e)$. It follows that, for every fixed unit vectore $\in R^{N}, g(t e)=\frac{f(t e)}{\left(1-t^{2}\right)}=$ $P_{e}(t) \sum_{k=0}^{\text {degf-2 }} \alpha_{k}(e) t^{k}$ with suitable constants $\alpha_{0}(e), \ldots, \alpha_{d e g-2}(e) \in R$. Thus $g=\sum_{k=0}^{\operatorname{deg} f-2} g_{k}$ is a polynomial. This completes the proof.

3. Theorem.

Let Ψ bounded continuously differentiable, $0<\Psi \leq 1$ and $W: B\left(R^{N}\right) \rightarrow R^{N}$ is a complete vector field then ΨW is complete vector field.

Proof. Let $\mathrm{w}(\mathrm{t})=\int_{\mathcal{T}=0}^{t} \psi\left(x_{\mathcal{T}}\right) d \mathcal{T}$, let $x_{0} \in R^{n}, x_{t}: \frac{d}{d t} x_{t}=w\left(x_{t}\right) \forall t \in$ R, x_{t} well-defined because w is complete .

$$
y_{t}=x_{w(t)} ; y_{0}=x_{w(t)}=x_{0}
$$

$$
\begin{aligned}
& \text { Issue } 19 \text { AL-osTATH Fall } 2020 \\
& \hline y^{\prime}(t)=\frac{d}{d t} y(t)=\Psi(y(t)) w(y(t)) \\
& y(t)=x(w(t)) ; \quad x(0)=x_{0} \\
& x^{\prime}(t)=w(x(t)) \\
& y^{\prime}(t)=\frac{d}{d t} y(t)=x^{\prime}(w(t)) w^{\prime}(t)=w(x(w(t))) \cdot w^{\prime}(t)=w(y(t)) \cdot w^{\prime}(t) \cdot \\
& \Psi(y(t))=w^{\prime}(t) ; w(0)=0 \\
& \Psi(x(w(t)))=w^{\prime}(t) \\
& \varphi=\Psi o x \\
& \text { Bounded By assumption (also } \left.C^{1} \text { smooth }\right) \\
& w^{\prime}(t)=\varphi(w(t)) ; w(0)=0 \\
& \frac{\grave{w}(t)}{\varphi(w(t))}=1, \quad \Phi(s)=\int_{\tau=0}^{s} \frac{d \tau}{\varphi(\tau)} \\
& \frac{d}{d t} \Phi(w(t))=1 ; \quad \Phi(0)=0 \text { Monotonic increasing strictly imply that } \Phi^{-1} \\
& \text { exists } \Phi(w(t))=t \text { then } w(t)=\Phi^{-1}(t) \\
& \text { Suite our requirement }
\end{aligned}
$$

4. Theorem.

If $P: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a polynomial function and $0 \neq \varnothing$:
$\mathrm{IR}^{\mathrm{k}} \rightarrow \mathrm{IR}$ is an affine function such that $P(q)=0$ for the points q of the hyper plane $\left\{q \in \mathbb{R}^{N}: \emptyset(q)=0\right\}$ then \emptyset is a divisor of P in the end sense that $P=\varnothing Q$ with some (unique) polynomial $Q: \mathbb{R}^{N} \rightarrow I R$.

Proof. Trivially, any two hyper planes are affine images of each other. In particular there is a one-to-one affine (i.e. linear + constant) map- ping A: $\mathbb{R}^{N} \leftrightarrow \mathbb{R}^{N}$, such that $\left\{q \in \mathbb{R}^{N}: \varnothing(q)=0\right\}=A\left(\left\{q \in \mathbb{R}^{N}: X_{1}(q)=0\right\}\right)$. Then R : $=P o A$ is a polynomial function such that $R(q)=0$ or the points of the hyper plane $\left\{q \in \mathbb{R}^{N}: x_{1}(q)=0\right\}$. (Benyousif, 2004 \& stacho, 2001)

We can write $R=\sum_{k_{1} \ldots k_{N}=0}^{d} \alpha_{K 1 \ldots \ldots \ldots, K_{N}} x_{1}^{k 1} \ldots x_{N}^{k N}$ with a suitable finite family of coefficients $\alpha_{K 1 \ldots K N}$ by the Taylor formula, $\alpha_{K_{1} \ldots \ldots K_{N}}=\left.\frac{\partial^{k 1+\cdots+k_{N}}}{\partial x_{1}{ }^{k 1} \ldots \partial x_{N}^{k_{N}}}\right|_{x_{1} \ldots x_{N}=0} R$. It follows $\alpha_{k_{1} \ldots \ldots \ldots k_{N}}=0$ for $k>0$, since R vanishes for $x_{1}=0$. This means that $R=x_{1} \mathrm{o} R$ with the polynomial
$R_{0}:=\sum_{k 1=1}^{d} \sum_{k 2, \ldots \ldots k n=0}^{d} x_{1}^{k 1-1} x_{2}^{k 2} \ldots \ldots \ldots \ldots x_{N}^{k_{N}}$. By the same argument. That is O is the sum of a linear functional with a constant.

Applied for the polynomial function \emptyset of degree $d=1$ in place of R, we see that $\emptyset \circ A=\alpha x_{1}$ for some constant (polynomial of degree 0$) \alpha \neq 0$. That is $\emptyset=$ $\alpha x_{1} \circ A^{-1}$. Therefore
$\mathrm{P}=\mathrm{Ro}^{-1}=\left[\mathrm{x}_{1} \mathrm{R}_{0}\right] \circ \mathrm{A}^{-1}=\left(\mathrm{x}_{1} \circ \mathrm{~A}^{-1}\right)=\left(\mathrm{R}_{0} \circ A^{-1}\right)=\varnothing\left({ }_{\alpha}^{1} \mathrm{R}_{0} \circ A^{-1}\right)$. Since the inverse of an affine mapping is affine as well, the function
$Q:=\left(1 / \alpha R_{0} \circ A^{-1}\right)$ is a polynomial which suits the statement of theorem.

5. Theorem:

Assume that $\mathrm{G} \subset \mathrm{R}^{\mathrm{n}}$ is an open connected set such that $\mathrm{G} \cap \mathrm{E}_{0} \neq \phi$ and let $\phi: G \rightarrow R$ be analytic function such that $\phi(x)=0$ for all $x \in G \cap E_{0}$. Then $(\mathrm{x})=\mathrm{x}_{1} \Psi$ for some analytic function $\Psi: G \rightarrow \mathrm{R}$ where $\mathrm{x}_{1}=\langle x . e\rangle$ and $\mathrm{x}=\left(\mathrm{x}_{1}\right.$,

Proof: Let $\mathrm{E}_{0}=<\mathrm{p} \in \mathrm{R}^{\mathrm{N}}: \mathrm{x}_{1}(\mathrm{p})=0>$, be a hyper-plane $\phi(\boldsymbol{p})=0$ for $\mathrm{p} \in \mathrm{E}_{0}$.

$$
\phi(p)=\sum_{k=1}^{\infty} \sum_{n_{1}+\ldots+n_{N}=h} a_{n_{1} \ldots n_{N}} x_{1}^{n_{1}}(p) \ldots x_{N}^{n_{N}(p)}
$$

$$
\mathrm{p} \in \mathrm{E}_{0} \Longrightarrow x_{1}(p)=0, x_{1}^{n_{1}}(p) \ldots x_{N}^{n_{N}}(p)=0, \text { if } \mathrm{n}_{1}>0
$$

$$
0=\phi(p)=\sum_{k=1}^{\infty} \sum_{n_{2}+\ldots+n_{N}=k} a_{n_{0} n_{2} \ldots n_{N}} x_{2}^{n_{2}(p) \ldots x_{N}^{n_{N}}(p) \text {, by assumption. } . ~}
$$

$$
p:=\xi_{2} e_{2}+\ldots+\xi_{N} e_{N} \in E_{0}, \xi_{2}, \ldots, \xi_{N} \in R \text {, arbitrary }
$$

$$
0=\phi(p)=\sum_{n_{2}+\ldots+n_{N}=k} a_{0} n_{2} \ldots n_{N} \xi_{2}^{n_{2}} \ldots \xi_{N}^{n_{N}}
$$

$$
a_{0 n_{2} \ldots n_{N}}=\frac{\partial^{n_{2}+\ldots+n_{N}} \phi\left(\xi_{2} e_{2}+\ldots+\xi_{N} e_{N}\right)}{\partial x_{2}^{n_{2} \ldots \partial x_{N}^{n_{N}}} \frac{1}{n_{2}!\ldots n_{N}!}=0 . ~ . ~ . ~}
$$

$$
a_{0 n_{2} \ldots n_{N}}=0, \forall n_{2}, \ldots, n_{N}
$$

$$
\phi(p)=\sum_{k=1}^{\infty} \sum_{\substack{n_{1}+\ldots+n_{N}=k \\ n_{1}>0}} a_{n_{1} n_{2} \ldots n_{N}} x_{1}^{n_{1}}(p) \ldots x_{N}^{n_{N}(p)}
$$

$$
=x_{1}(p) \sum_{k=1}^{\infty} \sum_{\substack{n_{1}+\ldots+n_{N}=k \\ n_{1}>0}} a_{n_{1} n_{2} \ldots n_{N}} x_{1}^{n_{1}-1}(p) \ldots x_{N}^{n_{N}}(p)
$$

$$
=x_{1}(p) \psi(p)
$$

$\psi(p)=\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n_{2}+\ldots+n_{N}=l} a_{n_{1} n_{2} \ldots n_{N}} x_{1}^{m}(p) \ldots x_{N}^{n_{N}}(p)$

With $\mathrm{m}=\mathrm{n}_{1}-1$ and $\mathrm{l}=\mathrm{k}-1$.

| Issue 19 | AL-OSTATH | Fall 2020 |
| :--- | :--- | :--- | :--- |

$\left.x_{2}, \ldots \ldots . x_{n}\right) \in R^{n}$.

Which complete the proof of most important theorems in analytic vector field on a unit ball subset from R^{N} complete

Proposition: By theorem $\varphi_{\mathrm{n}} \mathrm{V}$ is complete analytic vector filed on $B\left(R^{N}\right)$. (Walker, 1950)

Let $V(x)=\sum_{k=0}^{\infty} \sum_{k_{1} \ldots k_{N}=k} a_{k_{1} \ldots k_{N}} x_{1}^{k_{1}} \ldots x_{N}^{k_{N}}$ Taylor series
If $\forall \varepsilon>0 \quad V^{[n]}(x):=\sum_{k=0}^{N} \sum_{k_{1} \ldots k_{N}=k} a_{k_{1} \ldots k_{N}} x_{1}^{k_{1}} \ldots x_{N}^{k_{N}} \rightarrow$
Uniform on $(1-\varepsilon) B\left(R^{N}\right)$

Then $\varphi_{N} V^{[N]} \rightarrow V$ complete polynomial vector filed.
loc

| Issue 19 | AL-OSTATH Fall 2020 | |
| :--- | :---: | :---: | :---: |
| | -2 | 2 |

$\varepsilon \mathrm{p} \varepsilon$

$$
\varphi_{p, \varepsilon}=1-\left\langle\frac{1}{\varepsilon}(x-p), \frac{1}{\varepsilon}(x-p)\right\rangle^{\mathrm{n}_{\mathrm{p}, \varepsilon}}
$$

Example

$(r \cdot \cos \varphi, r \cdot \sin \varphi) \rightarrow\left(-t^{2} g\left(r \frac{\pi}{2}\right) \cdot \sin \varphi, t^{2} g\left(r \frac{\pi}{2}\right) \cdot \cos \varphi\right)$
$\binom{x}{y} \rightarrow\binom{-y}{x}$
$t^{2} g r=\sum_{k=0}^{\infty} \alpha_{k} r^{2 n}$
$\mathrm{P}\left(\binom{x}{y}\right):=\sum_{k=0}^{m} \alpha_{k}\left(\left(x^{2}+y^{2}\right)^{n}\right)\binom{-y}{x}$
Locally uniform, Approximation.

References

Issue 19

1- N.M. BEN Yousif, Complete polynomial vector fields on simplexes, Electronic Journal of Qualitative Theory of Differential Equations No 5. (2004), p.p.(1-10).

2- N.M. BEN Yousif. Complete polynomial vector fields in unit ball, e-journal AMAPN. Vol. (20) (1) 2004, Spring

3- L.L. Stachó, A counter example concerning contractive Projection of real JB'triples, Publ. Math., Debrecen, 58(2001), 223-230.

4- ROBERT J. Walker. Algebraic curves, Princeton-New Jersey, 1950.

